Package: LVGP 2.1.5
LVGP: Latent Variable Gaussian Process Modeling with Qualitative and Quantitative Input Variables
Fit response surfaces for datasets with latent-variable Gaussian process modeling, predict responses for new inputs, and plot latent variables locations in the latent space (only 1D or 2D). The input variables of the datasets can be quantitative, qualitative/categorical or mixed. The output variable of the datasets is a scalar (quantitative). The optimization of the likelihood function is done using a successive approximation/relaxation algorithm similar to another GP modeling package "GPM". The modeling method is published in "A Latent Variable Approach to Gaussian Process Modeling with Qualitative and Quantitative Factors" by Yichi Zhang, Siyu Tao, Wei Chen, and Daniel W. Apley (2018) <arxiv:1806.07504>. The package is developed in IDEAL of Northwestern University.
Authors:
LVGP_2.1.5.tar.gz
LVGP_2.1.5.zip(r-4.5)LVGP_2.1.5.zip(r-4.4)LVGP_2.1.5.zip(r-4.3)
LVGP_2.1.5.tgz(r-4.4-any)LVGP_2.1.5.tgz(r-4.3-any)
LVGP_2.1.5.tar.gz(r-4.5-noble)LVGP_2.1.5.tar.gz(r-4.4-noble)
LVGP_2.1.5.tgz(r-4.4-emscripten)LVGP_2.1.5.tgz(r-4.3-emscripten)
LVGP.pdf |LVGP.html✨
LVGP/json (API)
# Install 'LVGP' in R: |
install.packages('LVGP', repos = c('https://siyutao2020.r-universe.dev', 'https://cloud.r-project.org')) |
- math_example - Dataset for the example in function 'LVGP_fit'
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 6 years agofrom:1d8b6193b2. Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 29 2024 |
R-4.5-win | NOTE | Oct 29 2024 |
R-4.5-linux | NOTE | Oct 29 2024 |
R-4.4-win | NOTE | Oct 29 2024 |
R-4.4-mac | NOTE | Oct 29 2024 |
R-4.3-win | OK | Oct 29 2024 |
R-4.3-mac | OK | Oct 29 2024 |
Exports:corr_matLVGP_fitLVGP_plotLVGP_predictneg_log_lto_latent
Dependencies:lhsrandtoolboxRcpprngWELL